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MoreGallery  MoreGallery 1.x  Snippets  mgGetImages



    The mgGetImages snippet is used to iterate over images in a gallery.

It is the main snippet in MoreGallery, complemented with the mgGetTags snippet for listing tags.
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#General mgGetImages Usage

The minimum mgGetImages snippet call outputs a list of thumbnails, linking to an integrated detail page. The minimum snippet call looks like this:

[[!mgGetImages]]


You should always call mgGetImages uncached, as it manages caching internally. This makes sure the images on a Gallery resource are in sync with the frontend, without relying on full site cache clears.

#Listing & single image views

The mgGetImages snippet by default lists images in a gallery, but it also supports a “single image view” or “detail view”. When the page is requested with a iid URL parameter (or another parameter defined by the &singleImageParam snippet parameter), only the specific image is shown with the &singleImageTpl.

The single image view also includes previous and next images, so it can be used for a simple gallery view without any JavaScript solutions. This detail view is also used to render embed codes for videos and iframes for PDFs. The detail view can also be disabled with &singleImageEnabled.

The parameter for the rendering of one image in the list is &imageTpl, not &singleImageTpl.

#Snippet Properties

#&resource

The ID of the MoreGallery resource to get images from. By default, this will use the current resource, so you wont need to specify this if you want to show images from the current resource.

As of 1.5.0, you can also specify a comma separated list of resource IDs to get images from. This is best used in combination with a &sortBy of uploadedon or random.

Default: current resource ID

#&images

Provide a comma separated list of image IDs to only return those images. This overrides the &resource property.

Meant to be used with the Image Selector and &sortBy=`selection` to return images in the order they were selected.

Added in v1.16.

Default: none

#&sortBy

The field to sort images on. This can be one of the following: id, filename, name, sortorder, uploadedon, editedon or random to randomise the order of the images.

As of v1.16.0, you can also use selection in combination with an &images property that provides image IDs as a comma separated list. This is intended to be used with the Image Selector.

Default: sortorder

Note: Sorting by uploadedon may not load the right previous/next images in the single image view because of identical values. This was fixed in 1.16.0; on older versions you may sort by &id instead to produce a similar result.

#&sortDir

Used with the &sortBy property, this will decide in what direction (ASC: ascending or DESC: descending) the results will be sorted.

Default: ASC

#&tags

Specify a comma separated list of tag names or IDs to filter the resulting images on.

To find images that are not tagged with a certain tag, you can specify it with a dash in front (e.g. -highlight) since 1.4.0.

While similar in naming, has no relation to &getTags. If you would like to accept tags through an URL parameter, you can do so with the &tagsFromUrl property. Added in 1.1.0.

Default:

#&tagsFromUrl

When not empty, the snippet will look for an URL parameter with the specified name (so if you set this property to “tag” it will look for an URL parameter called “tag”) and filter image results on the value of that parameter, which can be a tag ID or actual tag display name. Added in 1.1.0.

#&getTags

Set to 1 to load tags for each image and to parse them through the chunk specified in the &tagTpl property.

The result of parsing tags through &tagTpl and separated by the value in &tagSeparator will be set to the [[+tags]] placeholder in both chunks for &imageTpl and &singleImageTpl. For added performance, disable this property by setting it to 0 when not using tags.

Added in 1.1.0.

Default: 1

#&getResourceFields

Set to 1 to make resource fields available in the &imageTpl and &singleImageTpl chunks.

The resource fields will be made available as placeholders prefixed by “resource”. For example [[+resource.pagetitle]].

When calling mgGetImages on the Gallery resource itself, this isn’t typically needed as you could just use the [[*pagetitle]] resource fields, but with multiple galleries this is useful to enable.

Added in 1.0.1.

#&getResourceContent

Set to 1 to also load the resource content into the [[+resource.content]] placeholder in the image chunks. &getResourceFields needs to be set to 1 for this property to work.

#&getResourceProperties

Set to 1 to also load the resource properties into the [[+resource.properties.NAMESPACE_HERE.KEY_HERE]] placeholders. &getResourceFields needs to be set to 1 for this property to work.

#&getResourceTVs

Set to a comma separated list of TV names to make available in the &imageTpl and &singleImageTpl chunks. &getResourceFields needs to be set to 1 for this property to work.

The TVs will be made available as placeholders prefixed by “resource”. For example for a TV called “superlongtitle”, the placeholder would be [[+resource.superlongtitle]].

When calling mgGetImages on the Gallery resource this isn’t typically needed as you could just use the Snippet: mgGetImages resource fields, but with multiple galleries this is useful to enable.

Added in 1.0.1.

#&imageTpl

The name of a chunk to use for each image in the result set. The default chunk used is this:

<li class="mg-image">
    <a href="[[+view_url]]" title="[[+name]]">
        <img src="[[+mgr_thumb]]" alt="[[+name]]">
    </a>
</li>


See further down this page for a description of all placeholders available for this chunk.

Individual images will be joined together by the value of the &imageSeparator property.

If you’re using videos in MoreGallery, you also need the &youtubeTpl and &vimeoTpl properties. They follow the same structure as the &imageTpl, but which are are applied to YouTube and Vimeo video records respectively. For PDFs, &pdfTpl is available. See below.

#&mediaTpl

The name of a chunk to use for each image imported from Sterc’s Media Manager. If not specified, this will use the same chunk as provided in the &imageTpl.

You can use the same placeholders as the &imageTpl, but you can also use the following placeholders that are specific to Sterc’s media manager:

	
[[+media.id]] or [[+media_manager_id]]: the ID of the file record in the media manager.
	
[[+media.media_sources_id]]: the ID of the media source that the media manager keeps the file in.
	
[[+media.name]]: the name of the file
	
[[+media.path]]: the path to the file, including the file name, relative to the media source root. The MoreGallery-provided [[+file_url]] and [[+file_path]] are already ready-to-use with the full url/path to the image where the Media Manager uploaded it.
	
[[+media.version]]: ??
	
[[+media.file_type]]: the file type/extension
	
[[+media.file_size]]: the file size in bytes
	
[[+media.file_dimensions]]: a string in the form of {width}x{height} representing the dimensions of the file. These are also available in MoreGallery’s standard [[+width]] and [[+height]] placeholders.
	
[[+media.file_hash]]: ??
	
[[+media.upload_date]]: a date string in the format Y-m-d H:i:s when the file was uploaded to the media manager. MoreGallery also provides [[+uploadedon]], which is an integer unix timestamp representing when the file was imported to the Gallery.
	
[[+media.uploaded_by]]: ID of the user that uploaded the image to the media manager. MoreGallery also provides [[+uploadedby]], which is the ID of the user that imported the image to the Gallery.
	
[[+media.edited_on]]: a date string in the format Y-m-d H:i:s when the file was last edited in the media manager. MoreGallery also provides [[+editedon]], which is an integer unix timestamp representing when the image record in MoreGallery was last updated.
	
[[+media.edited_by]]: ID of the user that last edited the file. MoreGallery also provides [[+uploadedby]], which is the ID of the user that last edited the image record in the gallery.
	
[[+media.is_archived]]: a boolean representing if the file was archived.
	
[[+media.archive_date]]: a date string or null representing when the file was archived.


#&youtubeTpl

The name of a chunk to use for templating a YouTube video. Works identical to &imageTpl for videos from YouTube.

The default chunk used is:

<li class="mg-video mg-video-[[+service]]">
    <a href="[[+view_url]]" title="[[+name:htmlent]]">
        <img src="[[+mgr_thumb]]" class="img-polaroid" alt="[[+name:htmlent]]">
    </a>
</li>


If you want the video embedded, you can use something like this:

<li class="mg-video mg-video-[[+service]]">
    <div class="flex-video widescreen [[+service]]">
        <iframe class="mg-video mg-video-[[+service]]" width="[[+width]]" height="[[+height]]"
                src="//www.youtube.com/embed/[[+video_id]]" frameborder="0"></iframe>
    </div>
</li>


#&vimeoTpl

The name of chunk to use for templating a Vimeo video. Works identical to &imageTpl for videos from Vimeo.

The default chunk used looks like this:

<li class="mg-video mg-video-[[+service]]">
    [[- If you want to show the Vimeo video directly, you use something like this:
    <div class="flex-video widescreen [[+service]]">
        <iframe class="mg-video mg-video-[[+service]]" width="[[+width]]" height="[[+height]]"
                src="//player.vimeo.com/video/[[+video_id]]" frameborder="0"></iframe>
    </div>
    Otherwise, the file_url and mgr_thumb contain the thumbnail for the video. ]]

    <a href="[[+view_url]]" title="[[+name:htmlent]]">
        <img src="[[+mgr_thumb]]" class="img-polaroid" alt="[[+name:htmlent]]">
    </a>
</li>


If you prefer embedding the video directly, you can use something like this:

<li class="mg-video mg-video-[[+service]]">
    <div class="flex-video widescreen [[+service]]">
        <iframe class="mg-video mg-video-[[+service]]" width="[[+width]]" height="[[+height]]"
                src="//player.vimeo.com/video/[[+video_id]]" frameborder="0"></iframe>
    </div>
</li>


#&pdfTpl

The name of chunk to use for templating a PDF file. Works identical to &imageTpl. The [[+mgr_thumb]] placeholder and crops will contain an image of the first page of the PDF, while [[+file_url]] will be a link to the actual PDF.

When no chunk is specified, the &imageTpl is used by default.

#&imageSeparator

A string to be used between images parsed through the chunk specified in &imageTpl.

Default: linebreak (\n)

#&tagTpl

The name of a chunk to use for each tag for each image, only if &getTags is enabled. Individual tags will be joined together by the value of the &tagSeparator property. The default chunk is stored in the filesystem to prevent changes which are overwritten on upgrade, but looks like this:

<a href="[[~[[*id]]? &tag=`[[+id]]`]]" class="th" title="View all images tagged [[+display]]">
    [[+display]]
</a>


This generates links to the current resource, passing along a “tag” URL parameter.

If the mgGetImages snippet call has &tagsFromUrl=tag added, that will filter the image results based on the tag.

Placeholders in the tagTpl are [[+id]], [[+display]] (the tag itself), [[+createdon]] (the first time the tag was added to an image) and createdby (the user ID of the user that used the tag the first time).

Added in 1.1.0.

#&tagSeparator

A string to be used between tags parsed through the chunk specified in &tagTpl. Added in 1.1.0.

Default: linebreak (\n)

#&singleImageEnabled

Set to 1 to enable the single image view, or 0 to disable it. When enabled, the snippet will automatically show a single image (detail view) with a different template (see &singleImageTpl) if the &singleImageParam is present in the URL. Useful for accessible image galleries. The single image view has been available since v1.0, the singleImageEnabled property was added in v1.4.

Default: 1

#&singleImageParam

The URL param to use for the single image view. This will contain the ID of an image inside the gallery that needs to be shown with the &singleImageTpl chunk. The single image view has been available since v1.0, but this property was added in v1.4. This setting inherits from the moregallery.single_image_url_param setting if left empty.

Default: iid

#&singleImageResource

For advanced setups where you may be retrieving images from a different resource, but need the single image view to happen on the current resource, you can specify this property. For example you may list images from &resource=15, but provide &singleImageResource=[[*id]] so the single images open on the current resource.

Added in 1.5.0.

Default: the value of &resource

#&singleImageTpl

The name of a chunk to use for the single image (/detail) view. See further down this page for the default and placeholders for this chunk.

For rendering of one image in the gallery listing, see &imageTpl instead.

There are also &singleYoutubeTpl and &singleVimeoTpl properties for YouTube and Vimeo videos respectively, and a &singlePdfTpl for PDFs, which both follow the same behaviour as the &singleImageTpl.

The default chunk used is:

<p>
    <a href="[[+file_url]]">
        <img src="[[+file_url]]" class="img-polaroid" alt="[[+name]]">
    </a>
</p>

<p>
[[+prev.id:notempty=`
    <a href="[[+prev.view_url]]">&laquo; [[+prev.name]]</a>
`]]
    <span class="text-center center">[[+name]]</span>
[[+next.id:notempty=`
    <a href="[[+next.view_url]]" class="text-right right">[[+next.name]] &raquo;</a>
`]]
</p>


#&singleYoutubeTpl

The name of a chunk to use for a single YouTube video embed. Works identical to &singleImageTpl for YouTube videos.

The default chunk used is:

<div class="flex-video widescreen [[+service]] embed-responsive embed-responsive-16by9">
    <iframe class="mg-video mg-video-[[+service]] embed-responsive-item" width="[[+width]]" height="[[+height]]"
            src="//www.youtube.com/embed/[[+video_id]]" frameborder="0"></iframe>
</div>

<p>
[[+prev.id:notempty=`
    <a href="[[+prev.view_url]]">&laquo; [[+prev.name]]</a>
`]]
    <span class="text-center center">[[+name]]</span>
[[+next.id:notempty=`
    <a href="[[+next.view_url]]" class="text-right right">[[+next.name]] &raquo;</a>
`]]
</p>


#&singleVimeoTpl

The name of a chunk to use for a single Vimeo video embed. Works identical to &singleImageTpl for Vimeo videos.

The default chunk used is:

<div class="flex-video widescreen [[+service]] embed-responsive embed-responsive-16by9">
    <iframe class="mg-video mg-video-[[+service]] embed-responsive-item" width="[[+width]]" height="[[+height]]"
            src="//player.vimeo.com/video/[[+video_id]]" frameborder="0"></iframe>
</div>

<p>
[[+prev.id:notempty=`
    <a href="[[+prev.view_url]]">&laquo; [[+prev.name]]</a>
`]]
    <span class="text-center center">[[+name]]</span>
[[+next.id:notempty=`
    <a href="[[+next.view_url]]" class="text-right right">[[+next.name]] &raquo;</a>
`]]
</p>


#&singlePdfTpl

The name of a chunk to use for a single PDF file being shown. Works identical to the &singleImageTpl property. The [[+mgr_thumb]] and crops will contain images of the first page in the PDF, while [[+file_url]] is a link to the actual PDF.

The default chunk used is:

<div class="embed-responsive">
    <iframe class="mg-pdf embed-responsive-item" width="[[+width]]" height="[[+height]]"
            src="[[+file_url]]" frameborder="0"></iframe>
</div>

<p>
[[+prev.id:notempty=`
    <a href="[[+prev.view_url]]">&laquo; [[+prev.name]]</a>
`]]
    <span class="text-center center">[[+name]]</span>
[[+next.id:notempty=`
    <a href="[[+next.view_url]]" class="text-right right">[[+next.name]] &raquo;</a>
`]]
</p>



#&wrapperTpl

The name of a chunk to use as wrapper template. See further down this page for the default and placeholders for this chunk.

#&wrapperIfEmpty

Set to 0 to return an empty result instead of the &wrapperTpl chunk when there are no (matching) images. Added in v1.4.

Default: 1

#&toPlaceholder

The name of a placeholder to set the result to. When empty it will return the result directly where called.

#&totalVar

Name of a placeholder to set the total amount of images to. (Primarily used for paginating results)

Default: total

#&limit

The amount of images to return (optionally per page) when listing images.

#&randomLimit

When using a random sort order, MoreGallery requests all images that match your filters and writes them to the cache. It then randomly picks them from the cache file on render.

On really large galleries, this can slow down performance and increase memory usage. In particularly large cases, we’ve seen the process of loading all results time out or exceed allowed memory, causing it to never write the file.

To avoid the heaviest hit, the &randomLimit property was introduced in v1.11.1 with a default of 1500 images. This means it will only ever grab 1500 images to pick a random one from. 1500 images equates +- 5 seconds of processing on an initial request, with much improved response times on subsequent requests grabbing &limit random images from the cache. You can tweak the number to match your scenario if you need more random results or more performance.

#&offset

Indicates starting at what index the results should be returned (primarily used for paginating results).

Note: if you’re specifying an offset, you also need to specify a limit larger than 0. This can be a crazy big amount if you want all images, but without a limit offset wont work.

#&scheme

The scheme to be used in url generation when the url field of an image is a resource ID. Defaults to the value of the link_tag_scheme (core) system setting.

#&cache

When enabled, mgGetImages will cache the images on various levels.

There really is no need to turn this off since 0.9.6. Changes to chunks and snippet properties are automatically recognised, causing it to regenerate the markup.

Default: 1

#&where

A JSON object for generic filtering. For example you can use this to get a specific image by passing {"id":5}.

#&activeOnly

By default mgGetImages will only show active images, but if you also want hidden images to be returned you can set this property to 0.

Default: 1

#&debug

When set to 1, MoreGallery will output a debug log showing how it processed the snippet call and ended up with the results it showed. This debug information is appended to the output of the snippet.

#&timing

When set to 1, MoreGallery will output the total time it took to process the snippet. This will be appended to the end of the snippet. Useful when combined with &debug to identify performance bottlenecks.

The expected timing for a cached result (so a repeat request) is expected to be around 5-10ms, while the uncached result strongy depends on the number of images that are loaded and the complexity of your templates.



#&imageTpl Chunk

The default chunk used in the imageTpl property is the following:

<li class="mg-image">
    <a href="[[+view_url]]" title="[[+name]]">
        <img src="[[+mgr_thumb]]" alt="[[+name]]">
    </a>
</li>


Before v1.5, this used to be:

<a href="[[+view_url]]" class="th">
    <img src="[[+file_path:phpthumbof=`w=200`]]" class="img-polaroid" alt="[[+name]]">
</a>


To show the image, the main placeholders to use are [[+file_url]], [[+file_path]] in combination with a thumbnail snippet like pthumb, [[+view_url]] for the single image view, or [[+mgr_thumb]] for the thumbnail also used in the manager.

When using video the [[+video_id]] placeholder contains the unique video ID for the service that can be used to create an embed code to suit your needs. The [[+service]] placeholder contains either youtube or vimeo. The chunk names for video are specified in either the &youtubeTpl or &vimeoTpl properties.

Our Demo Site contains an example implementation of MoreGallery.

The placeholders you can use in the chunks for &imageTpl, &youtubeTpl, &vimeoTpl, &singleImageTpl (see the next section), &singleYoutubeTpl and &singleVimeoTpl are listed below:

#[[+idx]]

The index of the image in the total set.

Example: 1

#[[+id]]

The ID of the image.

Example: 64

#[[+filename]]

The filename of the originally uploaded image. MoreGallery prepends the image ID to a filename when uploading, however this field does not include that.

Example: my-beautiful-image.png

#[[+file]]

The actual filename, relative to the location of the configured media source and this gallery its folder.

Example: 64_my-beautiful-image.png

#[[+file_url]]

A fully qualified url to the image based on the configured media source.

Example: /assets/galleries/6/64_my-beautiful-image.png

#[[+file_path]]

A fully qualified path to the image based on the configured media source.

Example: /home/user/public_html/assets/galleries/6/64_my-beautiful-image.png

#[[+mgr_thumb]]

A fully qualified url to a resized thumbnail used in the manager, retaining the aspect ratio within a maximum size of 250px by 250px.

#[[+width]]

The width of the uploaded image in pixels. Added in v1.3

#[[+height]]

The height of the uploaded image in pixels. Added in v1.3

#[[+uploadedon]]

The time, as defined by an integer unix timestamp, that the image was added to the gallery. Can be formatted into a user-readable date with the date output filter.

#[[+uploadedby]]

The ID of the MODX User Account that added the image to the gallery. This can be used with the userinfo output filter to show information about that user, for example:

[[+uploadedby:userinfo=`username`]]


#[[+editedon]]

The time, as defined by an integer unix timestamp, that the image was last edited. Note that dragging an image across the gallery may affect the editedon date for a large part of the gallery.

Can be formatted into a user-readable date with the date output filter.

#[[+editedby]]

The ID of the MODX User Account that last edited the image record. This can be used with the userinfo output filter to show information about that user, for example:

[[+uploadedby:userinfo=`username`]]


#[[+class_key]]

The type of image. This is usually mgImage, but when using Video this can also be mgYouTubeVideo or mgVimeoVideo. Added in v1.5

Example: mgImage

#[[+video_id]]

For use in the &youtubeTpl or &vimeoTpl chunks, this contains the unique ID for the video service. The standard <iframe> embed urls can be formed like this:

	YouTube: //www.youtube.com/embed/[[+video_id]]

	Vimeo: //player.vimeo.com/video/[[+video_id]]



For more information about working with Videos, see the Videos documentation.

#[[+service]]

For use in the &youtubeTpl or &vimeoTpl chunks, this contains either the string youtube or vimeo.

For more information about working with Videos, see the Videos documentation.

#[[+resource]]

The ID of the resource this image was uploaded to.

#[[+resource.KEY_HERE]]

If the &getResourceFields property was set as 1, the resource fields are available with the resource prefix. For example [[+resource.pagetitle]], [[+resource.uri]] or [[+resource.introtext]].

The [[+resource.content]] placeholder is available if &getResourceContent is enabled.

The [[+resource.properties.NAMESPACE_HERE.KEY_HERE]] placeholders are available if &getResourceProperties is enabled.

If a comma separated list of TV names is provided to &getResourceTVs, those values are available as [[+resource.TV_NAME_HERE]].

#[[+exif.KEY_HERE]]

An array containing the raw EXIF data extracted from the uploaded image. Learn more about using EXIF in MoreGallery.

#[[+exif_dump]]

A readable dump of the EXIF data extracted from the uploaded image. It’s best to wrap this in a pre tag for better legibility. Learn more about using EXIF in MoreGallery. Added in v1.4.

#[[+exif_json]]

A JSON formatted object of the EXIF data extracted from the uploaded image. Learn more about using EXIF in MoreGallery. Added in v1.4.

#[[+iptc.KEY_HERE]]

An array containing the IPTC data extracted from the uploaded image, processed to use normalised names for known elements. Learn more about using IPTC in MoreGallery. Added in v1.4.

#[[+iptc_dump]]

A readable dump of the IPTC data extracted from the uploaded image. It’s best to wrap this in a pre tag for better legibility. Learn more about using IPTC in MoreGallery. Added in v1.4.

#[[+iptc_json]]

A JSON formatted object of the IPTC data extracted from the uploaded image. Learn more about using IPTC in MoreGallery. Added in v1.4.

#[[+name]]

The name as entered by the user in the backend.

Example: My Beautiful Image

#[[+description]]

The description as entered by the user in the backend.

#[[+url]]

The URL as entered by the user in the backend. If a resource ID was entered, this will contain a generated url to the resource.

#[[+sortorder]]

The sort order as managed by the user in the backend through drag & drop.

#[[+view_url]]

An URL to the Gallery resource with the &iid URL parameter with the image’s ID as value. This is used for image detail pages, instead of linking to the image file directly.

This is also called the single image view.

#[[+prev.KEY_HERE]]

An array containing all the same fields above, but then for the image that was before this one in the result set. For example [[+prev.name]].

#[[+next.KEY_HERE]]

An array containing all the same fields above, but then for the image that is next in the result set. For example[[+next.name]].

#[[+custom.KEY_HERE]]

An array containing custom field values. Read more about Custom Fields. Added in v1.4.

#&singleImageTpl Chunk

The singleImageTpl is used when viewing a single image (with the &iid URL parameter or the parameter specified in the &singleImageParam property, generated by the  placeholder.

The default chunk used in the singleImageTpl property is the following:

<p>
    <a href="[[+file_url]]">
        <img src="[[+file_url]]" class="img-polaroid" alt="[[+name]]">
    </a>
</p>

<p>
[[+prev.id:notempty=`
    <a href="[[+prev.view_url]]">&laquo; [[+prev.name]]</a>
`]]
    <span class="text-center center">[[+name]]</span>
[[+next.id:notempty=`
    <a href="[[+next.view_url]]" class="text-right right">[[+next.name]] &raquo;</a>
`]]
</p>


The placeholders you can use are exactly the same as the placeholders for the imageTpl chunk, listed above.

#&wrapperTpl Chunk

The wrapperTpl chunk can be used (it is optional) to wrap the list output (i.e. &singleTpl’s) in.

There is no default wrapperTpl chunk. But you might use it like this:

<ul class="image-list">
    [[+output]]
</ul>


The available placeholders in the wrapperTpl are [[+output]], which contains all the images parsed through imageTpl chunks, and [[+image_count]], which contains the number of matching images.

If you have enabled &getResourceFields, the resource data is also available in the wrapperTpl as of v1.4.
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