

Skip to sidebar navigation

 Search

 Search...

 Contact Support

MoreGallery MoreGallery 1.x Snippets mgGetImages

 The mgGetImages snippet is used to iterate over images in a gallery.

It is the main snippet in MoreGallery, complemented with the mgGetTags snippet for listing tags.

 Table of Contents

 	
General mgGetImages Usage

	
Listing & single image views

	
Snippet Properties
	
&resource

	
&images

	
&sortBy

	
&sortDir

	
&tags

	
&tagsFromUrl

	
&getTags

	
&getResourceFields

	
&getResourceContent

	
&getResourceProperties

	
&getResourceTVs

	
&imageTpl

	
&mediaTpl

	
&youtubeTpl

	
&vimeoTpl

	
&pdfTpl

	
&imageSeparator

	
&tagTpl

	
&tagSeparator

	
&singleImageEnabled

	
&singleImageParam

	
&singleImageResource

	
&singleImageTpl

	
&singleYoutubeTpl

	
&singleVimeoTpl

	
&singlePdfTpl

	
&wrapperTpl

	
&wrapperIfEmpty

	
&toPlaceholder

	
&totalVar

	
&limit

	
&randomLimit

	
&offset

	
&scheme

	
&cache

	
&where

	
&activeOnly

	
&debug

	
&timing

	
&imageTpl Chunk
	
[[+idx]]

	
[[+id]]

	
[[+filename]]

	
[[+file]]

	
[[+file_url]]

	
[[+file_path]]

	
[[+mgr_thumb]]

	
[[+width]]

	
[[+height]]

	
[[+uploadedon]]

	
[[+uploadedby]]

	
[[+editedon]]

	
[[+editedby]]

	
[[+class_key]]

	
[[+video_id]]

	
[[+service]]

	
[[+resource]]

	
[[+resource.KEY_HERE]]

	
[[+exif.KEY_HERE]]

	
[[+exif_dump]]

	
[[+exif_json]]

	
[[+iptc.KEY_HERE]]

	
[[+iptc_dump]]

	
[[+iptc_json]]

	
[[+name]]

	
[[+description]]

	
[[+url]]

	
[[+sortorder]]

	
[[+view_url]]

	
[[+prev.KEY_HERE]]

	
[[+next.KEY_HERE]]

	
[[+custom.KEY_HERE]]

	
&singleImageTpl Chunk

	
&wrapperTpl Chunk

#General mgGetImages Usage

The minimum mgGetImages snippet call outputs a list of thumbnails, linking to an integrated detail page. The minimum snippet call looks like this:

[[!mgGetImages]]

You should always call mgGetImages uncached, as it manages caching internally. This makes sure the images on a Gallery resource are in sync with the frontend, without relying on full site cache clears.

#Listing & single image views

The mgGetImages snippet by default lists images in a gallery, but it also supports a “single image view” or “detail view”. When the page is requested with a iid URL parameter (or another parameter defined by the &singleImageParam snippet parameter), only the specific image is shown with the &singleImageTpl.

The single image view also includes previous and next images, so it can be used for a simple gallery view without any JavaScript solutions. This detail view is also used to render embed codes for videos and iframes for PDFs. The detail view can also be disabled with &singleImageEnabled.

The parameter for the rendering of one image in the list is &imageTpl, not &singleImageTpl.

#Snippet Properties

#&resource

The ID of the MoreGallery resource to get images from. By default, this will use the current resource, so you wont need to specify this if you want to show images from the current resource.

As of 1.5.0, you can also specify a comma separated list of resource IDs to get images from. This is best used in combination with a &sortBy of uploadedon or random.

Default: current resource ID

#&images

Provide a comma separated list of image IDs to only return those images. This overrides the &resource property.

Meant to be used with the Image Selector and &sortBy=`selection` to return images in the order they were selected.

Added in v1.16.

Default: none

#&sortBy

The field to sort images on. This can be one of the following: id, filename, name, sortorder, uploadedon, editedon or random to randomise the order of the images.

As of v1.16.0, you can also use selection in combination with an &images property that provides image IDs as a comma separated list. This is intended to be used with the Image Selector.

Default: sortorder

Note: Sorting by uploadedon may not load the right previous/next images in the single image view because of identical values. This was fixed in 1.16.0; on older versions you may sort by &id instead to produce a similar result.

#&sortDir

Used with the &sortBy property, this will decide in what direction (ASC: ascending or DESC: descending) the results will be sorted.

Default: ASC

#&tags

Specify a comma separated list of tag names or IDs to filter the resulting images on.

To find images that are not tagged with a certain tag, you can specify it with a dash in front (e.g. -highlight) since 1.4.0.

While similar in naming, has no relation to &getTags. If you would like to accept tags through an URL parameter, you can do so with the &tagsFromUrl property. Added in 1.1.0.

Default:

#&tagsFromUrl

When not empty, the snippet will look for an URL parameter with the specified name (so if you set this property to “tag” it will look for an URL parameter called “tag”) and filter image results on the value of that parameter, which can be a tag ID or actual tag display name. Added in 1.1.0.

#&getTags

Set to 1 to load tags for each image and to parse them through the chunk specified in the &tagTpl property.

The result of parsing tags through &tagTpl and separated by the value in &tagSeparator will be set to the [[+tags]] placeholder in both chunks for &imageTpl and &singleImageTpl. For added performance, disable this property by setting it to 0 when not using tags.

Added in 1.1.0.

Default: 1

#&getResourceFields

Set to 1 to make resource fields available in the &imageTpl and &singleImageTpl chunks.

The resource fields will be made available as placeholders prefixed by “resource”. For example [[+resource.pagetitle]].

When calling mgGetImages on the Gallery resource itself, this isn’t typically needed as you could just use the [[*pagetitle]] resource fields, but with multiple galleries this is useful to enable.

Added in 1.0.1.

#&getResourceContent

Set to 1 to also load the resource content into the [[+resource.content]] placeholder in the image chunks. &getResourceFields needs to be set to 1 for this property to work.

#&getResourceProperties

Set to 1 to also load the resource properties into the [[+resource.properties.NAMESPACE_HERE.KEY_HERE]] placeholders. &getResourceFields needs to be set to 1 for this property to work.

#&getResourceTVs

Set to a comma separated list of TV names to make available in the &imageTpl and &singleImageTpl chunks. &getResourceFields needs to be set to 1 for this property to work.

The TVs will be made available as placeholders prefixed by “resource”. For example for a TV called “superlongtitle”, the placeholder would be [[+resource.superlongtitle]].

When calling mgGetImages on the Gallery resource this isn’t typically needed as you could just use the Snippet: mgGetImages resource fields, but with multiple galleries this is useful to enable.

Added in 1.0.1.

#&imageTpl

The name of a chunk to use for each image in the result set. The default chunk used is this:

<li class="mg-image">

See further down this page for a description of all placeholders available for this chunk.

Individual images will be joined together by the value of the &imageSeparator property.

If you’re using videos in MoreGallery, you also need the &youtubeTpl and &vimeoTpl properties. They follow the same structure as the &imageTpl, but which are are applied to YouTube and Vimeo video records respectively. For PDFs, &pdfTpl is available. See below.

#&mediaTpl

The name of a chunk to use for each image imported from Sterc’s Media Manager. If not specified, this will use the same chunk as provided in the &imageTpl.

You can use the same placeholders as the &imageTpl, but you can also use the following placeholders that are specific to Sterc’s media manager:

	
[[+media.id]] or [[+media_manager_id]]: the ID of the file record in the media manager.
	
[[+media.media_sources_id]]: the ID of the media source that the media manager keeps the file in.
	
[[+media.name]]: the name of the file
	
[[+media.path]]: the path to the file, including the file name, relative to the media source root. The MoreGallery-provided [[+file_url]] and [[+file_path]] are already ready-to-use with the full url/path to the image where the Media Manager uploaded it.
	
[[+media.version]]: ??
	
[[+media.file_type]]: the file type/extension
	
[[+media.file_size]]: the file size in bytes
	
[[+media.file_dimensions]]: a string in the form of {width}x{height} representing the dimensions of the file. These are also available in MoreGallery’s standard [[+width]] and [[+height]] placeholders.
	
[[+media.file_hash]]: ??
	
[[+media.upload_date]]: a date string in the format Y-m-d H:i:s when the file was uploaded to the media manager. MoreGallery also provides [[+uploadedon]], which is an integer unix timestamp representing when the file was imported to the Gallery.
	
[[+media.uploaded_by]]: ID of the user that uploaded the image to the media manager. MoreGallery also provides [[+uploadedby]], which is the ID of the user that imported the image to the Gallery.
	
[[+media.edited_on]]: a date string in the format Y-m-d H:i:s when the file was last edited in the media manager. MoreGallery also provides [[+editedon]], which is an integer unix timestamp representing when the image record in MoreGallery was last updated.
	
[[+media.edited_by]]: ID of the user that last edited the file. MoreGallery also provides [[+uploadedby]], which is the ID of the user that last edited the image record in the gallery.
	
[[+media.is_archived]]: a boolean representing if the file was archived.
	
[[+media.archive_date]]: a date string or null representing when the file was archived.

#&youtubeTpl

The name of a chunk to use for templating a YouTube video. Works identical to &imageTpl for videos from YouTube.

The default chunk used is:

<li class="mg-video mg-video-[[+service]]">

If you want the video embedded, you can use something like this:

<li class="mg-video mg-video-[[+service]]">
 <div class="flex-video widescreen [[+service]]">
 <iframe class="mg-video mg-video-[[+service]]" width="[[+width]]" height="[[+height]]"
 src="//www.youtube.com/embed/[[+video_id]]" frameborder="0"></iframe>
 </div>

#&vimeoTpl

The name of chunk to use for templating a Vimeo video. Works identical to &imageTpl for videos from Vimeo.

The default chunk used looks like this:

<li class="mg-video mg-video-[[+service]]">
 [[- If you want to show the Vimeo video directly, you use something like this:
 <div class="flex-video widescreen [[+service]]">
 <iframe class="mg-video mg-video-[[+service]]" width="[[+width]]" height="[[+height]]"
 src="//player.vimeo.com/video/[[+video_id]]" frameborder="0"></iframe>
 </div>
 Otherwise, the file_url and mgr_thumb contain the thumbnail for the video.]]

If you prefer embedding the video directly, you can use something like this:

<li class="mg-video mg-video-[[+service]]">
 <div class="flex-video widescreen [[+service]]">
 <iframe class="mg-video mg-video-[[+service]]" width="[[+width]]" height="[[+height]]"
 src="//player.vimeo.com/video/[[+video_id]]" frameborder="0"></iframe>
 </div>

#&pdfTpl

The name of chunk to use for templating a PDF file. Works identical to &imageTpl. The [[+mgr_thumb]] placeholder and crops will contain an image of the first page of the PDF, while [[+file_url]] will be a link to the actual PDF.

When no chunk is specified, the &imageTpl is used by default.

#&imageSeparator

A string to be used between images parsed through the chunk specified in &imageTpl.

Default: linebreak (\n)

#&tagTpl

The name of a chunk to use for each tag for each image, only if &getTags is enabled. Individual tags will be joined together by the value of the &tagSeparator property. The default chunk is stored in the filesystem to prevent changes which are overwritten on upgrade, but looks like this:

 [[+display]]

This generates links to the current resource, passing along a “tag” URL parameter.

If the mgGetImages snippet call has &tagsFromUrl=tag added, that will filter the image results based on the tag.

Placeholders in the tagTpl are [[+id]], [[+display]] (the tag itself), [[+createdon]] (the first time the tag was added to an image) and createdby (the user ID of the user that used the tag the first time).

Added in 1.1.0.

#&tagSeparator

A string to be used between tags parsed through the chunk specified in &tagTpl. Added in 1.1.0.

Default: linebreak (\n)

#&singleImageEnabled

Set to 1 to enable the single image view, or 0 to disable it. When enabled, the snippet will automatically show a single image (detail view) with a different template (see &singleImageTpl) if the &singleImageParam is present in the URL. Useful for accessible image galleries. The single image view has been available since v1.0, the singleImageEnabled property was added in v1.4.

Default: 1

#&singleImageParam

The URL param to use for the single image view. This will contain the ID of an image inside the gallery that needs to be shown with the &singleImageTpl chunk. The single image view has been available since v1.0, but this property was added in v1.4. This setting inherits from the moregallery.single_image_url_param setting if left empty.

Default: iid

#&singleImageResource

For advanced setups where you may be retrieving images from a different resource, but need the single image view to happen on the current resource, you can specify this property. For example you may list images from &resource=15, but provide &singleImageResource=[[*id]] so the single images open on the current resource.

Added in 1.5.0.

Default: the value of &resource

#&singleImageTpl

The name of a chunk to use for the single image (/detail) view. See further down this page for the default and placeholders for this chunk.

For rendering of one image in the gallery listing, see &imageTpl instead.

There are also &singleYoutubeTpl and &singleVimeoTpl properties for YouTube and Vimeo videos respectively, and a &singlePdfTpl for PDFs, which both follow the same behaviour as the &singleImageTpl.

The default chunk used is:

<p>

</p>

<p>
[[+prev.id:notempty=`
 « [[+prev.name]]
`]]
 [[+name]]
[[+next.id:notempty=`
 [[+next.name]] »
`]]
</p>

#&singleYoutubeTpl

The name of a chunk to use for a single YouTube video embed. Works identical to &singleImageTpl for YouTube videos.

The default chunk used is:

<div class="flex-video widescreen [[+service]] embed-responsive embed-responsive-16by9">
 <iframe class="mg-video mg-video-[[+service]] embed-responsive-item" width="[[+width]]" height="[[+height]]"
 src="//www.youtube.com/embed/[[+video_id]]" frameborder="0"></iframe>
</div>

<p>
[[+prev.id:notempty=`
 « [[+prev.name]]
`]]
 [[+name]]
[[+next.id:notempty=`
 [[+next.name]] »
`]]
</p>

#&singleVimeoTpl

The name of a chunk to use for a single Vimeo video embed. Works identical to &singleImageTpl for Vimeo videos.

The default chunk used is:

<div class="flex-video widescreen [[+service]] embed-responsive embed-responsive-16by9">
 <iframe class="mg-video mg-video-[[+service]] embed-responsive-item" width="[[+width]]" height="[[+height]]"
 src="//player.vimeo.com/video/[[+video_id]]" frameborder="0"></iframe>
</div>

<p>
[[+prev.id:notempty=`
 « [[+prev.name]]
`]]
 [[+name]]
[[+next.id:notempty=`
 [[+next.name]] »
`]]
</p>

#&singlePdfTpl

The name of a chunk to use for a single PDF file being shown. Works identical to the &singleImageTpl property. The [[+mgr_thumb]] and crops will contain images of the first page in the PDF, while [[+file_url]] is a link to the actual PDF.

The default chunk used is:

<div class="embed-responsive">
 <iframe class="mg-pdf embed-responsive-item" width="[[+width]]" height="[[+height]]"
 src="[[+file_url]]" frameborder="0"></iframe>
</div>

<p>
[[+prev.id:notempty=`
 « [[+prev.name]]
`]]
 [[+name]]
[[+next.id:notempty=`
 [[+next.name]] »
`]]
</p>

#&wrapperTpl

The name of a chunk to use as wrapper template. See further down this page for the default and placeholders for this chunk.

#&wrapperIfEmpty

Set to 0 to return an empty result instead of the &wrapperTpl chunk when there are no (matching) images. Added in v1.4.

Default: 1

#&toPlaceholder

The name of a placeholder to set the result to. When empty it will return the result directly where called.

#&totalVar

Name of a placeholder to set the total amount of images to. (Primarily used for paginating results)

Default: total

#&limit

The amount of images to return (optionally per page) when listing images.

#&randomLimit

When using a random sort order, MoreGallery requests all images that match your filters and writes them to the cache. It then randomly picks them from the cache file on render.

On really large galleries, this can slow down performance and increase memory usage. In particularly large cases, we’ve seen the process of loading all results time out or exceed allowed memory, causing it to never write the file.

To avoid the heaviest hit, the &randomLimit property was introduced in v1.11.1 with a default of 1500 images. This means it will only ever grab 1500 images to pick a random one from. 1500 images equates +- 5 seconds of processing on an initial request, with much improved response times on subsequent requests grabbing &limit random images from the cache. You can tweak the number to match your scenario if you need more random results or more performance.

#&offset

Indicates starting at what index the results should be returned (primarily used for paginating results).

Note: if you’re specifying an offset, you also need to specify a limit larger than 0. This can be a crazy big amount if you want all images, but without a limit offset wont work.

#&scheme

The scheme to be used in url generation when the url field of an image is a resource ID. Defaults to the value of the link_tag_scheme (core) system setting.

#&cache

When enabled, mgGetImages will cache the images on various levels.

There really is no need to turn this off since 0.9.6. Changes to chunks and snippet properties are automatically recognised, causing it to regenerate the markup.

Default: 1

#&where

A JSON object for generic filtering. For example you can use this to get a specific image by passing {"id":5}.

#&activeOnly

By default mgGetImages will only show active images, but if you also want hidden images to be returned you can set this property to 0.

Default: 1

#&debug

When set to 1, MoreGallery will output a debug log showing how it processed the snippet call and ended up with the results it showed. This debug information is appended to the output of the snippet.

#&timing

When set to 1, MoreGallery will output the total time it took to process the snippet. This will be appended to the end of the snippet. Useful when combined with &debug to identify performance bottlenecks.

The expected timing for a cached result (so a repeat request) is expected to be around 5-10ms, while the uncached result strongy depends on the number of images that are loaded and the complexity of your templates.

#&imageTpl Chunk

The default chunk used in the imageTpl property is the following:

<li class="mg-image">

Before v1.5, this used to be:

To show the image, the main placeholders to use are [[+file_url]], [[+file_path]] in combination with a thumbnail snippet like pthumb, [[+view_url]] for the single image view, or [[+mgr_thumb]] for the thumbnail also used in the manager.

When using video the [[+video_id]] placeholder contains the unique video ID for the service that can be used to create an embed code to suit your needs. The [[+service]] placeholder contains either youtube or vimeo. The chunk names for video are specified in either the &youtubeTpl or &vimeoTpl properties.

Our Demo Site contains an example implementation of MoreGallery.

The placeholders you can use in the chunks for &imageTpl, &youtubeTpl, &vimeoTpl, &singleImageTpl (see the next section), &singleYoutubeTpl and &singleVimeoTpl are listed below:

#[[+idx]]

The index of the image in the total set.

Example: 1

#[[+id]]

The ID of the image.

Example: 64

#[[+filename]]

The filename of the originally uploaded image. MoreGallery prepends the image ID to a filename when uploading, however this field does not include that.

Example: my-beautiful-image.png

#[[+file]]

The actual filename, relative to the location of the configured media source and this gallery its folder.

Example: 64_my-beautiful-image.png

#[[+file_url]]

A fully qualified url to the image based on the configured media source.

Example: /assets/galleries/6/64_my-beautiful-image.png

#[[+file_path]]

A fully qualified path to the image based on the configured media source.

Example: /home/user/public_html/assets/galleries/6/64_my-beautiful-image.png

#[[+mgr_thumb]]

A fully qualified url to a resized thumbnail used in the manager, retaining the aspect ratio within a maximum size of 250px by 250px.

#[[+width]]

The width of the uploaded image in pixels. Added in v1.3

#[[+height]]

The height of the uploaded image in pixels. Added in v1.3

#[[+uploadedon]]

The time, as defined by an integer unix timestamp, that the image was added to the gallery. Can be formatted into a user-readable date with the date output filter.

#[[+uploadedby]]

The ID of the MODX User Account that added the image to the gallery. This can be used with the userinfo output filter to show information about that user, for example:

[[+uploadedby:userinfo=`username`]]

#[[+editedon]]

The time, as defined by an integer unix timestamp, that the image was last edited. Note that dragging an image across the gallery may affect the editedon date for a large part of the gallery.

Can be formatted into a user-readable date with the date output filter.

#[[+editedby]]

The ID of the MODX User Account that last edited the image record. This can be used with the userinfo output filter to show information about that user, for example:

[[+uploadedby:userinfo=`username`]]

#[[+class_key]]

The type of image. This is usually mgImage, but when using Video this can also be mgYouTubeVideo or mgVimeoVideo. Added in v1.5

Example: mgImage

#[[+video_id]]

For use in the &youtubeTpl or &vimeoTpl chunks, this contains the unique ID for the video service. The standard <iframe> embed urls can be formed like this:

	YouTube: //www.youtube.com/embed/[[+video_id]]

	Vimeo: //player.vimeo.com/video/[[+video_id]]

For more information about working with Videos, see the Videos documentation.

#[[+service]]

For use in the &youtubeTpl or &vimeoTpl chunks, this contains either the string youtube or vimeo.

For more information about working with Videos, see the Videos documentation.

#[[+resource]]

The ID of the resource this image was uploaded to.

#[[+resource.KEY_HERE]]

If the &getResourceFields property was set as 1, the resource fields are available with the resource prefix. For example [[+resource.pagetitle]], [[+resource.uri]] or [[+resource.introtext]].

The [[+resource.content]] placeholder is available if &getResourceContent is enabled.

The [[+resource.properties.NAMESPACE_HERE.KEY_HERE]] placeholders are available if &getResourceProperties is enabled.

If a comma separated list of TV names is provided to &getResourceTVs, those values are available as [[+resource.TV_NAME_HERE]].

#[[+exif.KEY_HERE]]

An array containing the raw EXIF data extracted from the uploaded image. Learn more about using EXIF in MoreGallery.

#[[+exif_dump]]

A readable dump of the EXIF data extracted from the uploaded image. It’s best to wrap this in a pre tag for better legibility. Learn more about using EXIF in MoreGallery. Added in v1.4.

#[[+exif_json]]

A JSON formatted object of the EXIF data extracted from the uploaded image. Learn more about using EXIF in MoreGallery. Added in v1.4.

#[[+iptc.KEY_HERE]]

An array containing the IPTC data extracted from the uploaded image, processed to use normalised names for known elements. Learn more about using IPTC in MoreGallery. Added in v1.4.

#[[+iptc_dump]]

A readable dump of the IPTC data extracted from the uploaded image. It’s best to wrap this in a pre tag for better legibility. Learn more about using IPTC in MoreGallery. Added in v1.4.

#[[+iptc_json]]

A JSON formatted object of the IPTC data extracted from the uploaded image. Learn more about using IPTC in MoreGallery. Added in v1.4.

#[[+name]]

The name as entered by the user in the backend.

Example: My Beautiful Image

#[[+description]]

The description as entered by the user in the backend.

#[[+url]]

The URL as entered by the user in the backend. If a resource ID was entered, this will contain a generated url to the resource.

#[[+sortorder]]

The sort order as managed by the user in the backend through drag & drop.

#[[+view_url]]

An URL to the Gallery resource with the &iid URL parameter with the image’s ID as value. This is used for image detail pages, instead of linking to the image file directly.

This is also called the single image view.

#[[+prev.KEY_HERE]]

An array containing all the same fields above, but then for the image that was before this one in the result set. For example [[+prev.name]].

#[[+next.KEY_HERE]]

An array containing all the same fields above, but then for the image that is next in the result set. For example[[+next.name]].

#[[+custom.KEY_HERE]]

An array containing custom field values. Read more about Custom Fields. Added in v1.4.

#&singleImageTpl Chunk

The singleImageTpl is used when viewing a single image (with the &iid URL parameter or the parameter specified in the &singleImageParam property, generated by the placeholder.

The default chunk used in the singleImageTpl property is the following:

<p>

</p>

<p>
[[+prev.id:notempty=`
 « [[+prev.name]]
`]]
 [[+name]]
[[+next.id:notempty=`
 [[+next.name]] »
`]]
</p>

The placeholders you can use are exactly the same as the placeholders for the imageTpl chunk, listed above.

#&wrapperTpl Chunk

The wrapperTpl chunk can be used (it is optional) to wrap the list output (i.e. &singleTpl’s) in.

There is no default wrapperTpl chunk. But you might use it like this:

<ul class="image-list">
 [[+output]]

The available placeholders in the wrapperTpl are [[+output]], which contains all the images parsed through imageTpl chunks, and [[+image_count]], which contains the number of matching images.

If you have enabled &getResourceFields, the resource data is also available in the wrapperTpl as of v1.4.

 	« Upload & Import Options
	mgGetTags »

 Found a typo, is a description unclear or missing completely?
 Edit this page
 or
 report an issue. Thank you!

 modmore documentation

 Open menu

 	 Agenda	 Agenda	Installation
	 Custom Manager Page	Overview
	Events
	Categories
	Calendars
	Locations
	Feeds
	Modules
	Settings

	System Settings
	 Snippets	AgendaList
	AgendaCalendar
	AgendaDetail
	AgendaDetailIcal
	AgendaCalendars
	AgendaCategories
	AgendaLocations
	AgendaGetDate
	AgendaEventGet
	AgendaEventSet
	AgendaSearch
	AgendaCalcDate
	AgendaCalcFirstFullWeek
	AgendaCalcLastFullWeek

	Cronjob
	Extended Fields
	Export Import Events
	System Events
	 Tutorials	Dynamic Opening Hours
	Frontend Editing
	FullCalendar Display

	FAQ

	 Commerce	 Commerce 1.x	Requirements
	 Getting Started	Configuration
	Product Catalog
	Customising the Cart & Checkout
	Next Steps

	 Product Catalog	Add to Cart Form
	Minimal
	Product Matrix
	Products TV
	Resource

	Front-end Theming
	 Products	Bundles
	Price Types
	Resource Products
	Stock
	Variations

	Currencies
	Delivery Types
	Invoices
	Multilingual Shops
	 Orders	Custom Fields
	Items
	Log
	Emails & Messages
	Order Reference
	Shipments
	Transactions

	 Payments & Gateways	Authorize & Capture Flow
	Adyen (HPP)
	Authorize.net
	Braintree
	Klarna
	Manual
	Mollie
	MultiSafePay
	Paymill
	PayPal
	Payrexx
	SagePay
	Stripe
	WiPay

	Permissions
	Reports & Exports
	 Scheduler	Scheduler task log

	Shipping Methods
	SimpleCart or Commerce?
	 Snippets	cart
	checkout
	collections view
	formatter
	get cart
	get matrix
	get matrix first product
	get matrix price
	get order
	get orders
	get product
	get products
	get resource product id
	render quantity price
	render taxed price

	 Statuses	Email Action
	Event Action
	Invoice Action
	States
	Webhook Action

	Taxes
	 Templates	Debugging
	Filters & Functions
	 frontend	 checkout	address.twig

	 Users	Login Resource
	Previous Addresses
	Register Resource
	View Orders

	 Modules & Extensions	 Address Validation	Basic Address Validation
	Country
	EUVat Validator

	 Admin	Customers
	HideProducts

	Avalara
	 Cart	Accept Terms & Conditions
	Autofill Geo IP
	CombineProducts
	Coupons
	DefaultAddress
	Enforce Stock Levels
	Item Data
	Minimum Order Amount
	Update Stock
	User Profile Address

	CloudPrint
	 Communication	MessageBird (SMS)

	Custom Fields (Basic)
	 DigitalProduct	get_file snippet
	get_user_files snippet
	Thank You page & Email template

	 Discounts	Coupons
	UserDIscounts

	 Donations	commerce_donation.cause
	commerce_donation.donations

	 Item Options

	Mailchimp
	MollieRefund
	PDF Writer: mPDF
	 Payments	Braintree
	Gateway Pack 1

	PDF Writer: PDFCrowd
	 Shipping	DymoAddressLabel
	GoogleRoutes
	MyParcel
	PackingSlip
	TableRates
	UserGroupShipment

	Slack
	SnippetStatusAction
	 Taxes	EU VAT
	TaxJar

	 Time Slots	Accessing Slot Information
	Shipping Template

	 Webwinkelfacturen	Setup

	 Class Reference	 Formatters	boolean
	date
	datetime
	filesize
	financial
	percentage
	time

	 Model	comAddress
	comCancelledOrder
	comCartOrder
	comCompletedOrder
	comCoupon
	comCouponUsage
	comCurrency
	comDeliveryType
	comDiscount
	comFreeProductDiscount
	comI18n
	comInvoice
	comModule
	comOrder
	comOrderAddress
	comOrderEmailMessage
	comOrderField
	comOrderInternalMessage
	comOrderItem
	comOrderItemAdjustment
	comOrderItemDiscountAdjustment
	comOrderItemExtraAdjustment
	comOrderItemShippingAdjustment
	comOrderItemTax
	comOrderLock
	comOrderLog
	comOrderMessage
	comOrderShipment
	comOrderTemplatedEmailMessage
	comPaymentMethod
	comProcessingOrder
	comProduct
	comProductBundle
	comProductBundleProduct
	comProductMatrix
	comProductMatrixColumn
	comProductMatrixProduct
	comProductMatrixRow
	comProductPriceIndex
	comResourceProduct
	comSchedulerTask
	comSessionCartOrder
	comSessionCartOrderItem
	comShippingMethod
	comShippingMethodByCountry
	comShippingMethodByWeight
	comSimpleObject
	comStatus
	comStatusChange
	comStatusChangeAction
	comStatusChangeActionCaptureTransactions
	comStatusChangeActionEmail
	comStatusChangeActionEvent
	comStatusChangeActionInvoice
	comStatusChangeActionWebhook
	comTaxGroup
	comTaxRate
	comTaxRule
	comTransaction
	comTransactionLog
	comUserDiscount
	comUserGroupDiscount

	 Miscellaneous	Country Restrictions

	 Developer	Base Class
	Orders
	Order Fields
	Order Items
	 Products	Price Index
	Pricing

	Transactions
	 Modules	Events
	 Examples	Add Backend Page
	Change Nav icon
	Add Order View button
	Add Report
	Registering a Payment Gateway

	MODX Adapter
	Status Change Actions
	Caching
	Custom Shipping Methods
	Payment Gateways
	 Admin	Data Management
	Form Fields

	Calculations
	Custom Tax Rate Providers
	Extended Models
	 Guides	Bootstrapping a Module
	Custom Price Types
	Making Custom Products

	Internationalisation
	 Payment Gateways	GatewayInterface
	SharedWebhookGatewayInterface
	WebhookGatewayInterface
	RedirectTransactionInterface
	TransactionInterface
	WebhookTransactionInterface
	GatewayHelper
	Omnipay2Gateway
	Migrate BaseGateway to Omnipay2Gateway

	PDF Writer
	Twig and Views

	 Upgrades	v0.10
	v0.10.x
	v0.11
	v0.12
	v1.0
	v1.1
	v1.2
	v1.3
	v1.4
	 v2	EventDispatcher
	Payment Gateways

	 User Guide	Using the Dashboard
	Managing Orders
	Order States & Statuses
	Product Pricing

	Getting Started

	 ConsentFriend	 ConsentFriend	Installation
	 Functionality	Introduction
	Default Services
	Contextual Consent
	Google reCAPTCHA
	Google Tag Manager
	YouTube Videos

	 Custom Manager Page	Tab Services
	Tab Purposes
	Tab Contexts
	Tab Statistics
	Tab Settings

	System Settings
	Themes
	Dashboard Widget
	Lexicon
	FAQ

	 ContentBlocks	 ContentBlocks 1.x	Layouts
	 Fields	Templates

	Templates
	Default Templates
	Categories
	Configuration
	Cropping
	 Available Input Types	Dropdown
	Images
	Layout
	Link
	Multi-Select
	Repeater

	 Custom Inputs	Developing Custom Inputs
	Troubleshooting Custom Inputs
	Icons in ContentBlocks
	Available Third Party Input Types

	Importing & Exporting
	Parsing & Templates
	 Snippets	cbHasField Snippet
	cbGetFieldContent Snippet
	cbFileFormatSize Snippet

	Setting up with Existing Content
	Internationalization
	Permissions
	Custom Resources
	 Tips Tricks	Auto-linked Headers with ContentBlocks
	Displaying MODX Code
	Load Field Specific Assets
	Grabbing the First Image

	Fields (moved)

	 DigitalSignage	 DigitalSignage	Getting Started
	Configuration
	Custom Templates
	Permissions
	RSS Feeds
	 Slide Types	Adding Custom Types
	Social Media

	 Formalicious	 Formalicious	Installation
	Media Sources
	Categories
	Field Types
	Create a Form
	FAQs
	 Special Fields	Math

	 v2	Installation
	Media Sources
	Categories
	Field Types
	Create a Form
	FAQs
	 Special Fields	Math

	 upgrades	v2.0.0

	 MoreGallery	 MoreGallery 1.x	User Guide
	Getting Started
	Configuration
	Cropping
	Upload & Import Options
	 Snippets	mgGetImages
	mgGetTags

	Video
	Custom Fields
	Batch Editing
	Image Selector
	Permissions
	Dealing with EXIF Data
	Dealing with IPTC data
	Plugin Events
	Pagination
	 Example Galleries	Using MoreGallery with Isotope.js

	Multiple Galleries
	 Tips Tricks	Responsive Images
	Resource to Gallery

	Thumbnails & Performance
	Accessibility
	Data Sharing

	 Redactor	 Redactor 3.x	Quickstart Guide
	Configuration Sets
	 Usage	Content
	ContentBlocks
	Fred
	Introtext
	MIGX
	Template
	Template Variables
	Third Party Extras

	 Feature Configuration	Autoparse
	Clips
	Custom CSS
	Custom Formatting
	Custom Plugins
	Dividers
	Font Options
	Image Path Mode
	Image Styles
	Inline Styles
	Link Styles
	Properties
	Source
	Text Expander
	Toolbar Buttons
	Upload Filename Sanitization
	Variables

	Permissions
	Shortcodes
	Shortcuts
	 Themes	Custom Themes

	 Upgrades	Upgrading from Redactor 2.x

	 Redactor 2.x	Upgrading from Redactor 1.x to 2.0
	Installation
	Configuration
	Managing Media
	Custom formats in Redactor
	Images and Base URLs
	Using Redactor in Custom Components
	Redactor Custom Template Variable
	Uploadcare
	Using the Clips Plugin
	Predefined Links
	Undo/Redo Buttons Plugin

	 Redactor 1.x	Installation
	Configuration
	Custom Template Variable
	Using Media Sources
	TinyMCE
	Creating Custom Formats
	Using Clips Plugin
	Custom Component Usage
	Predefined Links
	Customising the Toolbar

	 SimpleCart	 SimpleCart 2.x	 Frontend	 Manage Categories	Products
	Configuration and Category Settings
	Template Setup

	 Products	Settings
	Options
	Template Setup

	Cart
	 Checkout	Order and Delivery Addresses
	Custom Order Fields
	Confirmation Page
	Thank You
	My Orders
	Custom Order Status
	Finished Order Hooks

	Persisting Carts between Devices

	 Manager	 Orders	View Details
	Update Status
	Bind to User
	Resend Confirmation
	Export to CSV
	Create new Order

	Coupons
	Usergroup Discounts
	Free Products
	Stock
	 Administration	Order Statuses
	Delivery Methods
	Payment Methods
	Currencies
	Tax Rates
	Tax Sets & Rules
	Emails
	Settings

	 Snippets	scAddProduct
	scCartUpdate
	scCouponCode
	scCreateComment
	scCreateOrder
	scDeliveryMethods
	scFinishOrder
	scFirstChild
	scGetCart
	scGetOrders
	scGetProducts
	scNumberFormat
	scPaymentMethods
	scRecentlyViewed

	 Chunks	scCart
	scCartEmpty
	scCartFreeProduct
	scCartRow
	scCartRowField
	scCartRowOptions
	scCartVatRow
	scCheckoutForm
	scCouponForm
	scCouponResult
	scDeliveryMethod
	scEmailOrder
	scEmailOrderRow
	scEmailOrderRowField
	scEmailOrderRowOptions
	scEmailOrderStatusUpdate
	scEmailOrderVatRow
	scOption-Checks
	scOption-Radio
	scOption-Select
	scOrders
	scOrdersDetail
	scOrdersLogin
	scOrdersDetailComments
	scOrdersDetailCommentsForm
	scOrdersDetailCommentsRow
	scOrdersDetailRow
	scOrdersDetailRowField
	scOrdersDetailRowOptions
	scOrdersDetailVatRow
	scOrdersRow
	scPaymentMethod
	scProductOverviewItem
	scProductOverviewItemMulti
	scRecently
	scRecentlyRow

	 Configuring Payment Methods	PayPal
	Mollie
	Stripe
	StripeV2
	Authorize.net

	 Tutorials	Small Cart View
	One Page Checkout

	Dealing with Taxes
	Settings
	Dashboard Widget
	Coupons and Discounts
	Plugin Events

	 BabelTranslate	 BabelTranslate 1.x	Installation
	Usage
	System Settings
	FAQ

	 Open Source Extras	 Akismet	Akismet Snippet
	 Examples	FormIt
	Quip
	Register
	Standalone usage

	 BigBrother	Custom oAuth Credentials
	Privacy

	 ClientConfig	Getting started
	Retrieving Values
	Field Types
	Multiple Contexts
	Settings
	ConfigChange Event

	 CSRFHelper	FormIt
	 Login	Login
	Register
	UpdateProfile
	ChangePassword

	 Dashbored

	 Gitify	 Installation	Windows
	Mac

	 Commands	Backup
	Build
	Extract
	Help
	Init
	Restore
	modx:install
	modx:upgrade
	package:install

	.gitify file
	Data Files
	Updating Gitify
	Examples
	Installing a Gitify Project
	Troubleshooting

	 GitifyWatch	Getting Started
	Link Gitify
	Configure Environments
	Repository Setup
	Trigger Extract

	 Google Drive Media Source

	 QuickstartButtons

	 Scheduler	Installation
	Adding a Task
	Scheduling a Task
	Developing Tasks

	 SimpleAB	A/B Testing Templates
	A/B Testing Chunks
	Tracking Conversions
	Google Analytics
	Auto Optimizer
	Tips & Tricks

	 Meta	About modmore
	Package Provider
	Contributing to the Documentation

